

Quality Assurance Guideline CP-00-13000-01

Approved:

Date: 19 May 2004

Title: Software Programming Rev
NC Page 1 of 9

Copyright© This document is the property of Santa Barbara Applied Research (SBAR).
It shall not be copied without the prior written approval of Santa Barbara Applied Research (SBAR).

1.0 POLICY/PURPOSE

It is the policy of Santa Barbara Applied Research (SBAR) to employ consistent

programming practices to produce high-quality software. Good programming practices are an
essential part of reducing costs and increasing quality. The purpose of this guideline is to
provide recommendations for creating and developing software that follow good programming
practices. Following these practices will reduce the time necessary to develop and maintain
software.

2.0 SCOPE

This guideline applies to all SBAR personnel developing software in any programming or

scripting language. It is particularly important for software delivered to a customer, but applies
equally well to programs developed for internal use.

3.0 REFERENCES AND DEFINITIONS

3.1 References

ISO 9001: Quality Management Systems-Requirements, Third Edition (2000-12-15)

• ISO 9001 Element 7.3.2 (Design and Development Inputs)

3.2 Definitions

Functional Area Manager (FAM): A senior supervisory individual who is responsible for the
leadership, direction, and overall success of an area of the company, such as finance, human
resources, contract administration, engineering, operations and maintenance, logistics, quality,
special projects/contracts, etc.

Quality Assurance (QA): All the planned and systematic activities implemented within the
quality system and demonstrated, as needed, to provide adequate confidence that an entity will
fulfill its quality requirements.

Software Life Cycle: The steps that a software development project goes through, starting with
the requirements phase and ending with the software acceptance and delivery phase.

Quality Assurance Guideline CP-00-13000-01

Approved:

Date: 19 May 2004

Title: Software Programming Rev
NC Page 2 of 9

Copyright© This document is the property of Santa Barbara Applied Research (SBAR).
It shall not be copied without the prior written approval of Santa Barbara Applied Research (SBAR).

4.0 RESPONSIBILITIES

4.1 Functional Area Manager (FAM)

The FAM is responsible for the overall management of software projects and

programming efforts. The FAM:

• Provides guidance and direction on software development and design.
• Assigns programming tasks, as necessary.
• Acts as liaison between SBAR and client.

4.2 Programmer/Analysts

Programmer/Analysts are responsible for the design, creation and maintenance of

software applications. Programmer/Analysts:

• Provide technical expertise in software-related areas
• Provide analysis of software design
• Aid in cost estimates for contractual purposes
• Provide training and instruction to personnel as required
• Design, create, and maintain software
• Meet with clients for reviewing purposes or demonstrations of the product.

4.3 Programmers

Programmers are responsible for the creation and maintenance of software applications.
Programmers:

• Provide support in the design of software.
• Provide support in writing programs as directed.
• Make revisions to software as directed.
• Test and provide quality assurance (QA) for applications.
• Meet with clients for reviewing purposes or demonstrations of the product.

Quality Assurance Guideline CP-00-13000-01

Approved:

Date: 19 May 2004

Title: Software Programming Rev
NC Page 3 of 9

Copyright© This document is the property of Santa Barbara Applied Research (SBAR).
It shall not be copied without the prior written approval of Santa Barbara Applied Research (SBAR).

5.0 REQUIREMENTS/PROCEDURES:

5.1 General

The practices outlined below ensure that programs are written clearly; aiding in the
design, development, and maintenance of the software life cycle. The methods listed below
provide guidelines in developing well-written, robust applications.

5.2 Program Division

Programs shall be divided into meaningful modules or objects. These modules/objects

encapsulate a particular functionality or procedure, providing programs that are less complex and
easier to develop and maintain. Should portions of code become too large for clear
understanding, they should be further subdivided into smaller functions or procedures. This
guideline should be strictly adhered to unless program functionality prevents it; for example, if
program speed is greatly affected.

5.3 Naming Conventions

Names given to variables, functions, procedures, buttons, icons, etc. shall be specific to
their functionality. Currently, most programming environments allow the use of long variable
names; this should be taken advantage of, as practical. These names should be easy to
understand by someone looking at the program for the first time. All buttons, icons, etc. should
be given names and not left as the default, e.g. "button id 193" is changed to “next button”. This
guideline adds clarity to the program and makes software maintenance more manageable.

5.4 Header Comments

Comments shall be provided at the beginning of each procedure, function, handler, etc.

These comments tell what the procedure, function, handler, etc. does, but not necessarily how it
does it. Comments can also include inputs and outputs expected, name of person writing the
code, date code was written, and tracking information for version or change made, if applicable.

5.5 Inline or Code Comments

Comments shall be provided in any area of code that might be confusing or where

understanding of the program can be enhanced.

Quality Assurance Guideline CP-00-13000-01

Approved:

Date: 19 May 2004

Title: Software Programming Rev
NC Page 4 of 9

Copyright© This document is the property of Santa Barbara Applied Research (SBAR).
It shall not be copied without the prior written approval of Santa Barbara Applied Research (SBAR).

5.6 Indentation

Indentation of two or more spaces is used to enhance program readability. Code that is

too long to fit on one line has all subsequent lines indented at the same level of indentation under
the first line. All control structures (if then else, while loops, etc.) have internal statements and
expressions indented. The contents of procedures, functions, handlers, etc. shall also be
indented. This guideline helps in the reading and understanding of programming logic. For
ToolBook applications, see Attachment 1, “Software Style Guides for ToolBook.”

5.7 Whitespace

Blank lines shall be used wherever practical to separate procedures, functions, control

structures, etc. These lines shall be used to separate portions of code that logically should be
kept together from the rest of the code. This guideline is followed whenever practical; however,
sometimes programming space does not allow for this. If used effectively, whitespace can aid in
quickly being able to understand program flow and logic.

5.8 Data Extraction

All important data used to verify the correct operation of the computer program must be

available. If the data is not readily apparent, provisions for data extraction must be included in
the program (e.g., debug statements that can be switched off using a compiler switch). Switched
debugging statements must contain only code to display or record values. Data can be displayed
to a screen or recorded in a separate data extraction file. If possible, data extraction files shall be
in a user-friendly format.

When required by contract, data extraction is non-switch code that records predetermined

data to one or more data extraction files in the predetermined format.

5.9 Tracking Changes

Whenever changes are made to existing code that has been placed under configuration

management, the following apply:

• Comments delineate the beginning and end of the code change.
• Previous code is commented out instead of being deleted.
• Comments record the programmer and date of change.
• If available, comments record the reason for change, such as a software change

proposal (SCP).

Quality Assurance Guideline CP-00-13000-01

Approved:

Date: 19 May 2004

Title: Software Programming Rev
NC Page 5 of 9

Copyright© This document is the property of Santa Barbara Applied Research (SBAR).
It shall not be copied without the prior written approval of Santa Barbara Applied Research (SBAR).

5.10 Programming Style

While concise code is preferred, the follow-on programmer may not be as well versed in

the programming language. Therefore, the following style guidelines shall be used.

• Each programming statement shall do only one thing. Avoid compound statements.
• Each programming statement is placed on a separate line.
• Compiler “features” or “bugs” shall not be used.
• Architecture “features” or “bugs” shall not be used.
• Higher-level languages shall be used unless the lower level language or assembly

language offers significant advantages.

5.11 Records

Review of this guideline should be recorded on the Design Control Checklist for every

software project as a “Design and Development Input”.

5.12 Training

Training for this guideline is required for anyone writing software within the scope of this

procedure. Training records shall be maintained in the Training Attendance Form Binder, and/or
the individual’s personnel file.

Quality Assurance Guideline CP-00-13000-01

Approved:

Date: 19 May 2004

Title: Software Programming Rev
NC Page 6 of 9

Copyright© This document is the property of Santa Barbara Applied Research (SBAR).
It shall not be copied without the prior written approval of Santa Barbara Applied Research (SBAR).

Attachment 1. Software Style Guides for ToolBook

SBAR is in the business of selling software. That software should not only function properly, but also
should look professionally manicured and standardized. In addition to the satisfied clients that we will
help create, many of these guides will tend to speed up integration and debugging. Implementing these
guides costs little or no extra time if they are implemented during the design phase of a project. The
following guides are a start toward that end.

1. “END” statements: All “END” statements should be followed by text denoting what it is ending.

EG: END if
 END step
 END linkdll
 END conditions
 END while
 END buttonclick
 END in

This is especially valuable for long structures that cannot be totally seen on the CRT when integrating
and/or debugging. Additionally, TOOLBOOK does a much better job of locating syntax errors when this
text is available.

2. Indenting. Each of the “END”s in item 1 constitute the end of a structure. Each statement within a

structure should be indented by using the tab key (equivalent to four spaces).
EG: TO HANDLE buttonclick
 IF a = 1
 put ”1” into text of field “abc” of page “stores”
 put “1” into text of field “abc” of page “sStores”
 ELSE
 put “0” into text of field “abc” of page “stores”
 put “0” into text of field “abc” of page “sStores”
 END if
 END buttonclick

 Special Case: CONDITIONS
 WHEN <condition 1>
 <action 1>
 WHEN <condition 2>
 <action 2>
 ELSE
 <action 3>
 END conditions

Quality Assurance Guideline CP-00-13000-01

Approved:

Date: 19 May 2004

Title: Software Programming Rev
NC Page 7 of 9

Copyright© This document is the property of Santa Barbara Applied Research (SBAR).
It shall not be copied without the prior written approval of Santa Barbara Applied Research (SBAR).

3. Continuation Lines: Statements that are too long to be typed on one line should be split up at logical
breakpoints (see example). Subsequent lines should be indented by two spaces instead of the four
spaces generated by the tab key.

 IF (<long condition>)\
 and (<long condition>)\
 and (<long condition>)
 <action>
 END if

4. Capitalization: The eyes naturally tend to gravitate to upper case characters. All code should be

lower case except key words as follows:
a) The word “STEP” and the word “END” for looping structures.

EG: STEP n from 1 to 2
 hide rectangle “abc” of page(storespg[n])
 END step

b) The words “TO HANDLE” and the associated “END”.

EG: TO HANDLE buttonclick
 code …….

 END buttonclick

c) The word “LINKDLL” and the associated “END”.
EG: LINKDLL “tb40win.dll”
 code ……

 END linkdll

d) The words “IN VIEWER” and the associated “END”.
EG: IN VIEWER “smallmdi”
 code ……
 END in

e) The word “WHILE” and the associated “END”.

EG: WHILE a < 10
 code ……
 END while

f) The word “CONDITIONS” and the associated “END”.

EG: CONDITIONS
 WHEN a is 0
 code ……
 WHEN a is < 0
 code ……
 ELSE
 code ……
 END conditions

Quality Assurance Guideline CP-00-13000-01

Approved:

Date: 19 May 2004

Title: Software Programming Rev
NC Page 8 of 9

Copyright© This document is the property of Santa Barbara Applied Research (SBAR).
It shall not be copied without the prior written approval of Santa Barbara Applied Research (SBAR).

5. Use of quotation marks:
Preferred EG: hide rectangle “abc” of page “sStores” ----preferred.

The following examples are not preferred for the following reasons:

a) These statements will execute slightly slower. Without the quotes, TOOLBOOK considers

abc & sStores to be variables, causing one extra level of processing.
b) Global edits are more dangerous without the quotes and in some cases may be impossible.
c) The “of page < >” reduces the possibility of program errors especially in the case of the PTT

software where many duplicate item names exist on different pages.
d) The “of page < >” adds to the self-documenting capabilities of TOOLBOOK.

Non-Preferred: hide rectangle abc of page sStores

Never: hide rectangle abc

Quality Assurance Guideline CP-00-13000-01

Approved:

Date: 19 May 2004

Title: Software Programming Rev
NC Page 9 of 9

Copyright© This document is the property of Santa Barbara Applied Research (SBAR).
It shall not be copied without the prior written approval of Santa Barbara Applied Research (SBAR).

PREPARATION, REVIEW, AND APPROVAL OFFICIALS

Prepared By: Reviewed By:

Debra Ramey Blake Monson
Software Systems Manager CBT Specialist

Reviewed By: Approved By:

Ralph Chapman M.T. Schmoll
Quality Assurance Officer, Ventura

Approved By:

Grace Vaswani
President/CEO

Director, Corporate Programs

CONTROLLED DISTRIBUTION LIST

Copy No. Copy Custodian

Master (Electronic) Software Systems Manager
Copies SBAR Web Site

